Circle Theorems

Name: Class:
Date:
Mark

1) In the diagram below, angle $\mathrm{BAC}=60^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle ABC
b) angle ACB
2) Find angle $A B C$ in the following diagram, giving reasons for your answer.

3) In the diagram below, angle $\mathrm{AOC}=135^{\circ}$.

Find angle $A B C$, giving a reason for your answer.

Find angle $A B C$, giving a reason for your answer.

5) In the diagram below, angle $\mathrm{DAB}=93^{\circ}$ and angle $\mathrm{ABC}=81^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle BCD
b) angle CDA

Find angle OAB , giving reasons for your answer.

7) The diagram below shows a circle with points A, B, C and D on the circumference.

Find the following angles, giving reasons for your answers:
a) angle ABD
b) angle BAC

Find angle BDC, giving reasons for your answer.

9) In the diagram below, angle $\mathrm{BOC}=60^{\circ}$.

Find angle BAE, giving reasons for your answer.

10) In the diagram below, angle $\mathrm{ABD}=94^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle ACD
b) angle AED

Solutions for the assessment Circle Theorems

1) a) angle $\mathrm{ABC}=90^{\circ}$
b) angle $\mathrm{ACB}=30^{\circ}$

Reasons: Angle in a semicircle is 90° and angle sum of a triangle is 180°
3) angle $\mathrm{ABC}=67.5^{\circ}$

Reason: Angle at centre is twice angle at circumference
5) a) angle $\mathrm{BCD}=87^{\circ}$
b) angle $\mathrm{CDA}=99^{\circ}$

Reason: Opposite angles in a cyclic quadrilateral sum to 180°
7) a) angle $\mathrm{ABD}=51^{\circ}$
b) angle $\mathrm{BAC}=30^{\circ}$

Reason: Angles in the same segment are equal
9) angle $\mathrm{BAE}=60^{\circ}$

Reason: Angle at centre and circumference + angle between tangent and radius
or angles on a straight line + isosceles triangle + angle sum of triangle + angle between tangent and radius
2) angle $\mathrm{ABC}=31^{\circ}$

Reasons: Angle between tangent and radius is 90° and angle sum of a quadrilateral is 360°
4) angle $\mathrm{ABC}=65.5^{\circ}$

Reason: Angle at centre is twice angle at circumference
6) angle $\mathrm{OAB}=40.5^{\circ}$

Reason: Angle sum of a triangle is 180° and isosceles triangle
8) angle $\mathrm{BDC}=47^{\circ}$

Reason: Angle in a semicircle + angle sum of triangle + angles in same segment
10) a) angle $\mathrm{ACD}=94^{\circ}$
b) angle $\mathrm{AED}=86^{\circ}$

Reason: Angles in the same segment + cyclic quadrilateral

